

# Periplaneta americana Arginine Kinase As a Major Cockroach (CR) Allergen Among CR Allergic Thai Patients

Nitat Sookrung, Wanpen Chaicumpa, Anchalee Tungtrongchitr, Pakit Vichyanond, Chaweewan Bunnag, Pongrama Ramasoota, Pongsri Tongtawe, Yuwaporn Sakolvaree, and Pramuan Tapchaisri

doi:10.1289/ehp.8650 (available at http://dx.doi.org/)
Online 26 January 2006



Periplaneta americana Arginine Kinase As a Major Cockroach (CR) Allergen Among CR Allergic Thai Patients

Nitat Sookrung, <sup>1</sup> Wanpen Chaicumpa, <sup>1</sup> Anchalee Tungtrongchitr, <sup>2</sup> Pakit Vichyanond, <sup>3</sup> Chaweewan Bunnag, <sup>4</sup> Pongrama Ramasoota, <sup>5</sup> Pongsri Tongtawe, <sup>1</sup> Yuwaporn Sakolvaree, <sup>1</sup> and Pramuan Tapchaisri <sup>1</sup>

<sup>1</sup>The Graduate Studies, Faculty of Allied Health Sciences, Thammasat University, Rangsit Center, Pathum-thani, Thailand 12121; <sup>2</sup>Departments of Parasitology, <sup>3</sup>Pediatrics, and <sup>4</sup>Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand 10700; and <sup>5</sup>Department of Social Medicine and Environment, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand 10400

Address correspondence to W. Chaicumpa, Faculty of Allied Health Sciences,
Thammasat University, Rangsit Center, 99 Moo 18 Paholyothin Rd., Klong-luang,
Pathum-thani, Thailand 12121. Telephone: (661) 815-3917. Fax: (662) 516-5379.
E-mail: <a href="mailto:tmwcc@mahidol.ac.th">tmwcc@mahidol.ac.th</a> and <a href="mailto:tmwcc@yahoo.com">tmwcc@yahoo.com</a>
We thank Dr. Gunnar Froman, Department of Medical Microbiology, Uppsala
University, Sweden, for the T7 phage display library and Dr. Mark Roselieb, Sciences
Development and Management Co., Ltd., Bangkok, for reading the manuscript
This project was supported by the Thailand Research Fund and the National Research
Council of Thailand

The authors declare that they have no competing financial interests.

Short title: *P. americana* arginine kinase is a major allergen

Key words: allergen, arginine kinase, IgE, immunoblotting *P. americana*, peptide phage display, proteomics, two dimensional gel electrophoresis

#### **Abstract**

Periplaneta americana is the predominant cockroach (CR) species and a major source of indoor allergens in Thailand. Nevertheless, data on the nature and molecular characteristics of its allergenic components are rare. This work was carried out to identify and characterize P. americana allergenic protein. A random heptapeptide phage display library and monoclonal antibody (MAb) specific to a P. americana component previously shown to be an allergenic molecule, were used to identify the MAb-bound mimotope and its phylogenic distribution. Two dimensional (2D)-gel electrophoresis, liquid chromatography, mass spectrometry, peptide fingerprinting, and BLAST search, were used to identify the *P. americana* protein containing the MAb-specific epitope. Allergenicity of the native protein was studied by using sera of CR allergic Thai patients in immunoassays. The mimotope peptide that bound to the *P. americana* specific MAb was LTPCRNK. The peptide has an 83 to 100% identity with proteins of Anopheles gambiae, notch homolog scalloped wings of Lucilia cuprina, Delta protein of Apis mellifera; neu5Ac synthase and tyrosine phosphatase of *Drosophila melanogaster*, and a putative protein of *D. pseudoobscura*. This finding implies that the mimotope-containing molecule of *P. americana* is a pan insect protein. The MAb-bound-protein of P. americana was shown to be arginine kinase which reacted to IgE in the sera of all of the CR allergic Thai patients by immunoblotting, implying its high allergenicity. In conclusion, our results revealed that P. americana arginine kinase is a pan insect protein and a major cockroach allergen for CR allergic Thai patients.

#### Introduction

Cockroach (CR) allergy has been recognized as important IgE-mediated type 1 hypersensitivity since 1964 (Bernton and Brown, 1964). Prolonged exposure and sensitization to CR allergen, which is one of the major indoor allergens in Thailand and elsewhere, gave rise to asthmatic attacks which required emergency hospital visits especially in young children (Chapman et al. 1996; Tungtrongchitr et al. 2004). Because cockroaches are ubiquitous, CR allergy is a worldwide public health problem especially in cities with dense housing and a crowded population where the living conditions favor cockroach infestation (Chapman et al. 1996; Sarpong et al. 1996). It is now accepted that there is a relationship between CR exposure, CR allergen sensitization and asthma (Eagleston et al. 1999; Sporik et al. 1999). Avoiding exposure to the causative allergens is the most effective measure to reduce asthmatic morbidity (Call et al. 1992; Gelber et al. 1993). Thus, the quantitative determination of indoor allergens including CR allergens is the most important measure for disease intervention.

Most reagents currently available for quantitation of CR allergens are aimed at the German CR allergens (Platts-Mill et al. 1997). In 2003, two murine hybridomas, i.e., clone 3C2 and 38G6 secreting specific monoclonal antibodies (MAb) to allergens derived from American CR, *Periplaneta americana*, were produced in our laboratory (Sookrung et al., 2003). Affinity column purified antigens of the crude American CR extract reactive to the MAb secreted by the two hybridoma clones gave positive Prausnitz-Kustner (P-K) tests (for the P-K test, pooled sera of CR allergic Thai patients was injected into shaved skin of a guinea-pig at multiple sites; after 24 hours the same sites were individually injected with either the affinity purified-CR antigens or PBS which was used as a negative control. Wheal and flare were observed at the

sites injected with the CR antigens 15 min after the injection, but not at the sites injected with the negative control antigen), implying the allergenic property of the two affinity purified-CR antigens (Sookrung et al. 2003). The antigen specific to MAb3C2 was proved to be a Per a1 variant (Per a1.0105; GenBank accession number AY 259514) (Diraphat et al. 2003). The deduced amino acid sequence of the gene encoding the Per a1.0105 (372 bp open reading frame), which is a 124 amino acid protein with a molecular mass of 13.8 kDa and an isoelectric point of 4.74, revealed that the molecule contained a mitochondrial energy transfer protein signature, i.e., phosphorylation sites for the cAMP and cGMP-dependent protein kinase C and the casein kinase II. Hydrophobic and hydrophilic characteristics of the deduced polypeptide indicated that it was a transmembrane protein orthologous to a putative protein in the midgut of Aedes aegypti (AY 050565) (Diraphat et al. 2003). The MAb of clone 3C2 specific to Per a1.0105 was used in a sandwich ELISA as a detection reagent for P. americana allergen in the homes of CR allergic Thai patients (Tungtronchite et al. 2004).

In this study, a random heptapeptide phage display library was used to identify the mimotope of the MAb38G6. Moreover, *P. americana* protein containing the MAb38G6 epitope was characterized using two dimensional (2D)-gel electrophoresis, 2D-immunoblotting, liquid chromatography/mass spectrometry (LC/MS), MS/peptide mass fingerprinting (PMF), and BLAST search. The molecule was found to be *P. americana* arginine kinase (AK) which reacted to IgE in the sera of all CR allergic Thai patients. Details of our experiments form the basis of this report.

Materials and Methods

#### Human subjects and sera

Sera were collected individually from 25 Thai patients with CR allergy who gave a positive skin prick test to crude *P. americana* extract. They were patients of the Department of Otorhinolaryngology, Faculty of Medicine, Siriraj Hospital, Mahidol University in Bangkok, Thailand. Serum samples of some patients were tested for specific IgE antibodies against German cockroach extract using the CAP System (Amersham Biosciences, Uppsala, Sweden). Cut-off point between CAP positive and negative was 0.35 IU. Sera of five individuals with a negative skin prick test to crude *P. americana* extract served as controls. The patients and the controls gave their informed consent. Table 1 indicates characteristics of the 25 allergic patients and the 5 negative controls.

# Specific monoclonal antibody (MAb) to American cockroach, *P. americana*, allergen

Monoclonal antibodies specific to *P. americana* antigen (allergen) secreted by hybridoma clone 38G6 (Sookrung et al. 2003) grown in a serum free medium (Gibco, Invitrogen Corporation, NY) were used.

#### Preparation of *P. americana* crude extract

Adult *P. americana* caught from houses in Bangkok were entomologically identified and kept frozen at -70°C until used. The frozen *P. americana* were ground to fine pieces in liquid nitrogen using mortar and pestle. Phosphate buffered saline, 0.15 M, pH 7.4 (PBS) containing protease inhibitors (Roche Diagnostics GmbH, Mannheim, Germany) was added; the preparation was sonicated (Model VC750, Vibra Cell™ Sonics & Materials Inc., Newtown, CT) at a 30% amplitude, 2 sec-pulse-on, 2.5 sec-pulse-off, for a total of 5 min and then centrifuged at 12,000 g, at 4°C, for 20 min. The supernatant (CR extract) was collected and the protein content was quantitated using Bradford reagents (Bio-Rad, Hercules, CA) (Bradford, 1976).

#### T7 phage peptide library

A random heptapeptide phage display library was constructed by Dr. Gunnar Froman, Department of Medical Microbiology, Uppsala University, Sweden, using the T7 select-415 kit from Novagen (Wisconsin, Madison, WI). The library construction was started by synthesizing a random heptapeptide DNA. The DNA sequences were derived from degenerate oligonucleotides, which were synthesized chemically by adding mixtures of nucleotides to growing nucleotide chains. The oligonucleotide synthesis was designed to yield seven-residue-long random amino acid sequences flanked by cysteine residues. To limit the occurrence of in-frame stop codons, the third position of every nucleotide triplet following the first cysteine codon was synthesized from a mixture of G and T nucleotides. A mixture of 32 nucleotide triplets was formed, including codons for all 20 natural amino acids, and one stop codon. Each synthesized oligonucleotide construct was ligated to the T7 vector arm. The target peptide was expressed as a fusion partner to the C-terminus of the major capsid protein and was displayed on the virion surface, where it was accessible for interaction with other proteins or ligands. Each displayed peptide was situated between cysteine residues, and therefore, formation of a disulfide bridge joined the ends of the heptapeptide. The fusion peptide was present in 415 copies on each phage particle. The library was designated T7S. It had an original size of  $3.3 \times 10^7$  pfu, but it was amplified to a titer of  $2.6 \times 10^{10}$  pfu/mL before use (Houshmand et al. 1999).

#### Bio-panning for the determination of the MAb38G6 mimotope

MAb38G6 was diluted in PBS to 10  $\mu$ g/mL; 100  $\mu$ L aliquots were distributed to the wells of a 96-well microtiter plate (Costar, Corning, NY) and incubated at 37°C overnight. The MAb-coated wells were washed with PBS containing 0.05 % Tween-20 (PBST), blocked by adding 200  $\mu$ L PBS containing BSA (50 mg/mL) to each well

and incubated at 4°C, for 18 hr. Excess blocking reagent was removed by washing with PBST, the T7S-peptide phage library was added to the MAb-coated-wells and incubated at 25°C under agitation for 30 min. Unbound phages were washed off; bound phages were released by incubating each well with 100 µL of 1% SDS. The eluted phages were used to infect *E. coli* BL21 cells to produce a peptide-phage sub-library for the next bio-panning round. Three more bio-panning rounds were done to increase the phage binding affinity to the MAb. Finally, the phages in the forth sub-library were cloned by plaque isolation and ten single plaques of T7 phages were randomly picked by cutting out the gel plugs. DNA was extracted from individual gel plugs containing the selected phages and used as templates for DNA amplification by PCR.

# PCR and DNA sequencing

DNA of the selected phage clones were amplified according to the instructions of the manufacturer (Novagen 2000, Novagen) using the T7 select up (5'-AGCTGTCGTATTCCAGTCA-3') and down (5'-ACCCCTCAAGACCCGTTTA-3') nucleotides as primers. The PCR product was purified using the QIA quick PCR purification kit (Qiagen, Valencia, CA). The product, together with the T7 select up primer was then subjected to an automated DNA sequencing procedure.

# Two-dimensional (2D)-gel electrophoresis

American CR extract was cleaned with the 2D-Clean-up kit (Amersham Biosciences, San Francisco, CA) to eliminate detergents, salts, lipids, phenolics, and nucleic acids. After cleaning, the preparation was rehydrated in a buffer containing IPG buffer (8 M urea, 2% CHAPS, 0.5% IPG buffer 3-10 non-linear, 0.002% Bromphenol blue). The protein content was determined using the 2D-Quant kit (Amersham Biosciences) before subjecting it to the first dimension electrophoresis. The preparation (60 μg

protein) was added to DeStreak<sup>TM</sup> Rehydration Solution containing IPG (0.5% IPG buffer 3-10 non-linear) (Amersham Biosciences). The preparation was loaded into the IPG strip holder while care was taken not to produce any bubbles. The IPG strip, stored at -20°C, was placed (right side down) into the strip holder containing the sample and dry strip cover fluid (1 mL) was added. The strip holder was placed into the Ettan IPG Phor Electrofocusing System (Amersham Biosciences) and the IPG strip was allowed to rehydrate at 20°C for 12 hr. Electrophoresis was performed initially at 0.2 kiloVolts-hr (kVhr) for 30 min, followed by 0.3 kVhr gradient for 30 min, 4.0 kVhr for 80 min and step and hold for 15 min. For the second dimension gel electrophoresis, the electrofocused-IPG strip was equilibrated in 10 mL SDSequilibration buffer (50 mM Tris-HCl, pH 8.8, 6 M Urea, 30% glycerol, 2% SDS, 0.002% Bromphenol blue) containing 100 mg dithiothreitol (DTT) for 15 min. Subsequently, the strip was placed in 10 mL of the equilibration buffer containing 250 mg iodoacetamide (IAA) for 15 min. It was washed with electrode buffer and overlaid onto a 12% polyacrylamide gel casted in Mini-PROTEAN® 3 Cell (Bio-Rad, Hercules, CA). SDS-PAGE was performed at 10 mAmp/gel during the first 15 min and at 20 mAmp/gel until the tracking dye reached the lower edge of the gel. After SDS-PAGE, the gel was either stained by Coomassie Brilliant Blue (CBB) dye for the CR proteomics, or the separated components in the gel were electrotransblotted onto a polyvinylidene difluoride (PVDF) membrane for further identification by 2Dimmunoblotting with MAb38G6.

#### 2D-immunoblotting

The PVDF membrane blotted with the 2D-gel separated-CR components was placed in a blocking solution (3% bovine serum albumin in Tris buffered saline, pH 7.4 [TBS]) at 25°C for 1 hr. After washing with a wash buffer (TBS containing 0.05

Tween-20 [TBS-T]), the blot was incubated with MAb38G6 at 25°C for 2 hr. After the excess MAb was removed and the membrane was washed thoroughly with the wash buffer, it was placed in a rabbit anti-mouse-immunoglobulin-biotin conjugate (DakoCytomation, Demmark; diluted 1:1,000 in TBS-T) at 25°C for 1 hr, washed with TBS-T, and incubated with streptavidin-alkaline phosphatase (DakoCytomation), diluted 1:1,000, in a diluent (0.2% BSA, 0.2% gelatin in TBS) at 25°C for 30 min. After washing with the wash buffer and placing it in 0.15 M Tris-HCl, pH 9.6 for 10 min, the membrane was then incubated with BCIP/NBT substrate (KPL, Gaithersburg, MD) in the dark for 10 min. The enzyme-substrate reaction was stopped by rinsing the membrane with deionized distilled water.

# Liquid chromatography/mass spectrometry (LC/MS)

Protein spots corresponding to those reactive to MAb38G6 in the 2D-immunoblot were cut from the 2D-CBB stained-gel. They were subjected to in-gel reduction, alkylation and trypsin digestion. For LC/MS analysis, a nano-LC system (Finnigen) was coupled to a Finnigen LTQ (Thermo Electron Corporation, USA). Peptide separation was done using a C18 reversed phase column (BioBasic-18; column dimensions  $100 \times 0.18$  mm, 5 µm particle size) and a gradient of 0 to 60% B in A (A = 0.1% formic acid in water; B = 0.1% formic acid in acetonitrile) for 22 min, and at a constant flow rate of 200 µL/min. Each digest was analyzed in LC/MS mode for identification. Fragmentation of the peptides was performed in data-dependent mode and mass spectra were acquired in continuum mode.

#### Mass spectrometry (MS) and peptide mass fingerprinting (PMF)

A protein spot, corresponding to its counterpart reactive to MAb38G6 in the 2D-immunoblot, was cut from the 2D-CBB-stained-gel and destained with 50 mM ammonium bicarbonate containing 50% methanol. This process was repeated twice

to completely destain, to wash out traces of salts, and to change the pH. After destaining, gel plug was air-dried at 25°C until the plug appeared white and powdery. Trypsin (20-40 ng/ $\mu$ L in 20 mM ammonium bicarbonate) was added in a small volume (<5  $\mu$ L) to get as much as possible inside the gel plug during the rehydration. Trypsin digestion was performed at 25°C for 1.5 hr. The digested sample was transferred to the extraction plate by adding 25  $\mu$ L 50% acetonitrile, 0.5% TFA solution. The solution was run up and down in the pipette tip before transferring it to the new tube. This procedure was repeated to maximize the extraction process. The sample was spotted onto the MALDI target by mixing the extracted and concentrated sample in a 1:1 ratio (v/v) with a 3 mg/mL solution of re-crystallized  $\alpha$ -cyano matrix. The sample was allowed to air-dry before PMF was performed on the sample both with and without internal calibration with Ang III (897.523 m/z) and ACTH (2465.19 m/z). All results were obtained on the Ettan MALDI ToF Pro (Amersham Biosciences) using methods pre-programmed into the Ettan control window. The resultant spectra were the sum of 200 laser shots.

# MAb-affinity purified-cockroach antigen

Protein of the *P. americana* that reacted to MAb38G6 which had previously been shown to be an allergen was prepared from the CR crude extract using a MAb-affinity column chromatography as previously described (Sookrung et al. 2003). The affinity-purified allergen was used in a Western blot analysis and in sandwich ELISA for detecting IgE in the sera of patients and controls.

# **SDS-PAGE** and Western blot analysis (WB)

The affinity-purified *P americana* protein (50 μg) was separated in a 12% SDS-PAGE in a Mini-PROTEAN<sup>®</sup> 3 Cell (BioRad) and electroblotted onto a PVDF

membrane (Amersham Biosciences), which was cut into vertical strips. The strips were blocked with 3% bovine serum albumin in TBS at 25°C for 1 hr and then incubated individually with the sera of CR allergic patients or non-CR allergic controls (diluted 1:10 in diluent, i.e., 0.2% BSA, 0.2% gelatin in TBS) at 4°C overnight. After rinsing with TBS-T, the strips were placed in a solution of mouse anti-human IgE-biotin conjugate (Zymed Laboratory, San Francisco, CA) diluted 1: 1,000 and incubated at 25°C for 3 hr, washed with TBS-T, incubated with streptavidin-alkaline phosphatase conjugate (DakoCytomation) diluted 1:1,000 in diluent at 25°C for 30 min, washed, and then placed in 0.15 M Tris-HCl, pH 9.6 for 10 min. The strips were finally incubated with BCIP/NBT substrate (KPL) in the dark for 10 min. The enzyme-substrate reaction was stopped by rinsing all strips with deionized distilled water.

#### **ELISA**

A sandwich ELISA was used for determining the allergenicity of the *P. americana* protein containing the MAb38G6-specific epitope. One hundred  $\mu$ L of MAb38G6 (40  $\mu$ g/mL in carbonate-bicarbonate buffer, pH 9.6) were added to each well of the ELISA plate (Costar). The plate was incubated at 37°C until it was dry. All coated wells were washed with PBST, added up individually with 200  $\mu$ L of a blocking solution (1% BSA in PBS, pH 7.4) and the plate was further incubated at 37°C for 1 hr. After washing with PBST, 100  $\mu$ L of the affinity purified *P. americana* antigen (5  $\mu$ g/mL) was added to each well, incubated at 37°C for 30 min and washed as above. Then 100  $\mu$ L of the individual patient sera was added to the wells. A well added up with PBS served as a blank. The ELISA plate was incubated at 4°C overnight and washed thoroughly with PBST. One hundred  $\mu$ L of mouse anti-human

IgE-biotin conjugate (Zymed Laboratory; diluted 1:1,000 in diluent) were added to each well. The plate was incubated at 37°C for 3 hr, washed with PBST and 100  $\mu$ L of streptavidin-horseradish peroxidase (DakoCytomation) diluted 1:1,000 in the diluent were added to each well. After further incubating at 37°C for 30 min, the plate was washed as above and freshly prepared substrate (O-phenylenediamine [OPD], [Zymed Laboratory] in a citrate-phosphate buffer, pH 5.0 containing 0.03% hydrogen peroxide) was added to each well (100  $\mu$ L/well). The plate was kept in the dark at 25° C for 30 min, after which the reaction was stopped adding 50  $\mu$ L of 4 N H<sub>2</sub>SO<sub>4</sub>. The optical density (OD) of the content of each well was measured at 492 nm with an ELISA reader (Multiscan *EX*, Labsystems, Helsinki, Finland) against the blank.

#### Statistical analysis

Mann-Whitney Rank Sum test was used for comparing ELISA OD of arginine kinase specific IgE in sera of patients with CR allergy and normal controls. *P*-value <0.01 is statistically significant.

#### Results

Mimotope of MAb38G6 identified by T7 heptapeptide phage display library. DNA extracted from the ten T7 phage clones derived from the 4<sup>th</sup> phage sub-library with high binding affinity to the MAb38G6 were PCR amplified and DNA of the individual amplicons were sequenced. All clones were found to have the same nucleotide sequence of CTC ACT CCA TGC CGT AAT AAG; thus the peptide sequence was LTPCRNK. The LTP were amino acids of the T7 capsid peptide (Houshmand et al. 1999).

Polypeptides in the databank matching to the mimotope LTPCRNK are shown in Table 2. An 83 to 100% identity was found between the LTPCRNK mimotope and

proteins of *Anopheles gambiae*, notch homolog scalloped wings of sheep blow flies (*Lucilia cuprina*), neu5Ac synthase and protein tyrosine phosphatase of *Drosophila melanogaster*, putative protein of *D. pseudoobscura*, and the Delta protein of the honey bee (*Apis mellifera*).

**Result of 2D-immunoblotting.** Figure 1 shows the proteome of *P. americana* extract after 2D-gel electrophoresis stained by CBB dye (Figure 1A). Figure 1B illustrates 8 protein spots reactive with MAb38G6 in the 2D-immunoblotting.

Results of protein identification by LC/MS and MS/PMF. Proteins in gel plugs, corresponding to spots no. 1 to 8 in Figure 1B, cut from the 2D-gel stained by CBB were subjected to LC/MS. Their amino acid sequences were aligned with those of the proteins deposited in the databank. Results showed that the proteins in all of the 8 spots were homologous to the protein arginine kinase, which had a pI of 6.3 and a molecular mass of 40.57 kDa. Figure 2 shows the mass spectrum of the protein of spot no. 2 obtained from LC/MS.

The protein in the gel plug at spot no. 2 (the most intense protein spot) was also subjected to MS/PMF. The MS profile of the peptide from spot no. 2 showed multiple peaks ranging from 500 to 3,500 Da (Figure 3). The prominent peaks were selected for comparison with the established databases, and the protein with the highest correlation with this spot was found to be KARG\_PACMR arginine kinase. Thus, the results of MS/PMF confirmed those of the LC/MS.

Allergenicity of P. americana arginine kinase among the CR allergic Thai patients. SDS-PAGE and Western blot analysis showed that all (100%) of the 25 serum samples of the CR allergic Thai patients had specific IgE which bound to the MAb38G6-affinity purified P. americana protein, i.e. arginine kinase, in their sera

(lanes 1-25, Figure 4). None of the negative control serum samples was positive by the test (lanes 26-30, Figure 4).

Allergenicity of P. americana arginine kinase determined by sandwich ELISA. The MAb38G6 and the affinity column purified-arginine kinase were used in the sandwich ELISA to detect arginine kinase specific IgE in serum samples of 25 pediatric patients and 5 normal controls. It was found that 20 of 25 patients (80%) gave positive sandwich ELISA results; none of the serum samples of non-allergic individuals was positive (Figure 5).

# Discussion

Although cockroach (CR) allergy is a public health problem of Thailand, neither the precise nature nor the source of the CR allergens has been thoroughly studied. In Thailand the predominant species of CR is the American CR, P. americana (Tungtrongchitr et al. 2004). Available information from elsewhere suggested that the allergens may derive from several anatomical parts as well as from the excretion and secretions, such as saliva, fecal materials, regurgitated secretions, etc. of the CR (Menon et al. 1991; Richman et al. 1984). Numerous protein components in the P. americana crude extract were found to react to the IgE in sera of CR allergic Taiwanese patients (Wu et al. 1997). These components ranged from >120 to ~6 kDa in molecular masses (Wu et al. 1996). Among them, the 78, 72, 45, and 28 kDa components were most reactive to the patients' serum IgE, implying their high allergenicity. CR allergens, such as P. americana Per a1 and their variants, tend to exist in multimeric forms (Pomes et al. 2002). Thus, several antigen-antibody reactive bands of different molecular masses are usually seen in Western blot analyses of SDS-PAGE separated-CR allergens and IgE in sera of CR allergic patients. In 2003, we produced two hybridoma clones, namely clones 3C2 and 38G6, which secreted monoclonal antibodies reactive only to antigens in *P. americana* crude extract. The specific antigen of the MAb3C2 proved to be a Per a1 variant, i.e. Per a1.0105, which is a 124 amino acid protein with a molecular mass of 13.8 kDa (Diraphat et al. 2003). However, the MAb3C2 showed an antigen-antibody reactive band at ~ 45-40 kDa in the Western blot analysis against SDS-PAGE separated-crude *P. americana* extract (Sookrung et al. 2003) indicating the allergen's polymeric form. The epitope of the MAb38G6 and the nature and function of the *P. americana* protein carrying the epitope have not yet been studied.

Random peptide phage display libraries have been successfully applied for mapping epitopes of various monoclonal antibodies specific to various pathogens, such as bovine herpes virus (Lehman et al. 2004) and Neisseria meningitides (Charalambous and Feavers, 2000). A random peptide phage library designated T7S constructed by Dr. Gunnar Froman, Department of Microbiology, Uppsala University, Sweden, was used previously for the determination and characterization of a mimotope that bound to monoclonal antibody to mouse polyomavirus large T-antigen (Houshmand et al. 1999) and a mimotope of monoclonal antibody specific to Leptospira spp. (Tungtrakanpong et al. 2006). In this study, the library was used successfully in a search for a mimotope of monoclonal antibodies to P. americana allergen, secreted from the hybridoma clone 38G6 (protein purified from American CR extract which bound to this MAb was shown to be an allergen [Sookrung et al. 2003]). All of the ten isolated phage clones derived from the 4<sup>th</sup> phage sub-library which showed a high binding affinity to the immobilized MAb38G6, revealed the same nucleotide sequence in their genome, and hence the same encoded polypeptide, i.e. LTPCRNK, displayed on their surface; implying the high specificity of this peptide sequence to the MAb38G6. Although the LTP is a part of the T7 capsid protein (Houshmand et al.1999; Tungtrakanpong et al. 2006) it can be also a part of the mimotope. By comparing the mimotope amino acid sequence to those in the databank using BLASTP software (http://www.ncbi.nlm.nih.gov/BLAST/), it was revealed that the mimotope had an 83 to 100% identity with various proteins of the insect phylogeny. Although this mimotope search did not give an account on the function of the mimotope containing protein, nevertheless, the findings implied that the *P. americana* protein that contained the mimotope/epitope to MAb38G6 was a pan insect protein. This protein was previously shown to be an allergen by a P-K test performed in guinea-pigs sensitized with a pool of sera of CR allergic patients as mentioned above. Identification of the MAb38G6-bound protein by LC/MS revealed that the protein is the P. americana arginine kinase. The LC/MS result could be confirmed by MS/PMF and BLAST search. Heterologous arginine kinases have previously been demonstrated to be cross-reactive pan-invertebrate allergens (Binder et al. 2001). The native arginine kinase purified from P. americana extract reacted to IgE in 80% and 100% of the CR allergic Thai patients by sandwich ELISA and Western blotting, respectively. Our data demonstrate that the P. americana protein arginine kinase is a major CR allergen. Allegenicity of the affinity purified- or recombinant argine kinase should be evaluated *in vivo* by performing skin prick test in the CR allergic patients.

# References

- Bernton HS, Brown H. 1964. Insect allergy preliminary studies of the cockroach.

  Allergy 35:506-513.
- Binder M, Mahler V, Hayek B, Sperr WR, Scholler M, Prozell S, et al. 2001.

  Molecular and immunological characterization of arginine kinase from Indianmeal moth, *Plodia interpunctella*, a novel cross-reactive invertebrate panallergen. J Immunol 167:5470-5477.
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.

  Anal Biochem 72:248-254.
- Call RS, Smith TF, Morris E, Chapman MD, Platts-Mills TAE. 1992. Risk factors for asthma in inner city children. J Pediatr121:862-866.
- Chapman MD, Vailes LD, Hayden ML, Platts-Mills TAE, Arruda LK. Cockroach allergens and their role in asthma. 1996. In: Kay AB, ed. Allergy and Allergic Diseases. Oxford, UK: Blackwell Science Ltd., 942-951.
- Charalambous MB, Feavers IM. 2000. Peptide mimics elicit antibody response against the outer membrane lipooligosaccharide of group B *Neisseria meningitides*. FEMS Microbiol Letter 191:45-50.
- Diraphat P, Sookrung N, Chaicumpa W, Pumhirun P, Vichyanond P, Tapchaisri P *et al.* 2003. Recombinant American cockroach component, Per a 1, reactive to IgE of allergic Thai patients. Asian Pac J Allergy Immunol 21:11-20.
- Eggleston PA, Rosenstreich D, Lynn H, Gergen P, Baker D, Kattan M *et al.* 1999. Relationship of indoor allergen exposure to skin test sensitivity in inner city children with asthma. J Allergy Clin Immunol 102:563-570.

- Gelber LE, Seltzer LH, Bouzoukis JK, Pollart SM, Chapman MD, Platts-Mills TAE.

  1993. Sensitization and exposure to indoor allergens as risk factors for asthma among patients presenting to hospital. Am Rev Respir Dis 147:573-578.
- Houshmand H, Froman G, Magnusson G. 1999. Use of bacteriophage T7 displayed peptides for determination of monoclonal antibody specificity and biosensor analysis of the binding reaction. Anal Biochem 268:363-370.
- http://www.ncbi.nlm.nih.gov/BLAST/. Accessed on July 18, 2005.
- Lehman D, Sodoyer R, Leterme S. 2004. Characterization of BoHV-1gE envelope glycoprotein mimotopes obtained by phage display. Vet Microbiol 204:1-17.
- Menon P, Menon V, Hilman B, Stankus RP, Lehrer SB. 1991. Skin test reactivity to whole body and fecal extracts of American (*Periplaneta americana*) and German (*Blattella germanica*) cockroaches in atopic asthmatics. Ann Allergy 67:573-577.
- Platts-Mills TAE, Veruloet D, Thomas WR, Aalberse RC, Chapman MD. 1997.

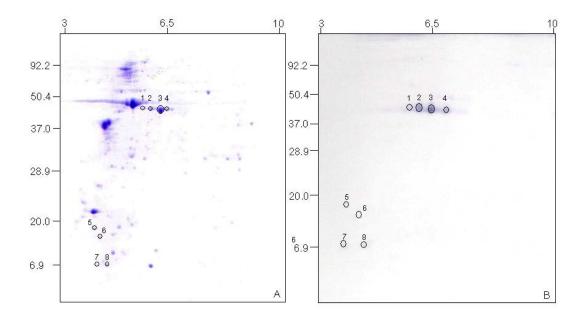
  Indoor allergens and asthma; report of the Third International Workshop. J

  Allergy Clin Immunol 100:s2-24.
- Pomes A, Vailes LD, Helm RM, Chapman MD. 2002. IgE reactivity of tandem repeats derived from cockroach allergen, Bla g1. Eur J Biochem 269:3086-3092
- Richman PG, Khan HA, Turkeltaub PC, Malveaux FJ, Baer H. 1984. The important sources of German cockroach allergens as determined by RAST analyses. J Allergy Clin Immunol 73:590-595.
- Sarpong S, Hamilton RG, Eagleston PA, Adkinson NF. 1996. Socioeconomic status and race as risk factors for cockroach allergen exposure and sensitization in children with asthma. J Allergy Clin Immunol 97:1393-1401.

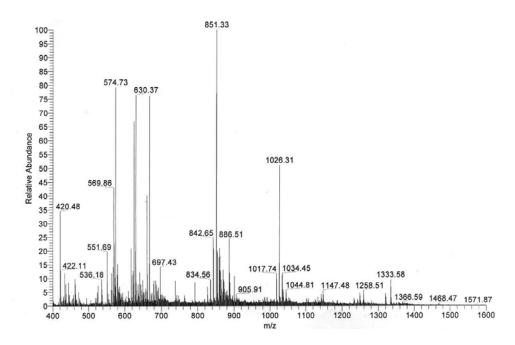
- Sookrung N, Diraphat P, Chaicumpa W, Tongtawe P, Sakolvaree Y, Tapchaisri P *et al.* 2003. Cockroach allergen detection and cockroach allergens of allergic Thai patients. Asian Pac J Allergy Immunol 21:1-9.
- Sporik R, Squillace SP, Ingram JM, Rakes G, Honsinger RW, Platts-Mills TAE.

  1999. Mite, cat and cockroach exposure, allergen sensitization, and asthma in children: a case-control study in three schools. Thorax 54:675-680.
- Tungtrakanpong R, Pitaksajjakul P, Na-ngarm N, Chaicumpa W, Ekpo P, Saengjaruk P *et al.* 2006. Mimotope identification from monoclonal antibodies specific to serovars of *Leptospira* using phage-displayed random peptide library. Accepted, Vet Microbiol
- Tungtrongchitr A, Sookrung N, Munkong N, Mahakittikun V, Chinabut P, Chaicumpa W *et al.* 2004. The levels of cockroach allergen in relation to cockroach species and allergic diseases in Thai patients. Asian Pac J Allergy Immunol 22:115-121.
- Wu CH, Hsieh MJ, Huang JH, Luo SF. 1996. Identification of low molecular weight allergens of American cockroach and production of monoclonal antibodies. Ann Allergy Asthma Immunol 76:195-203.
- Wu CH, Luo SF, Wong DW. 1997. Analysis of cross-reactive allergens from American and German cockroaches by human IgE. Allergy 52:411-416.

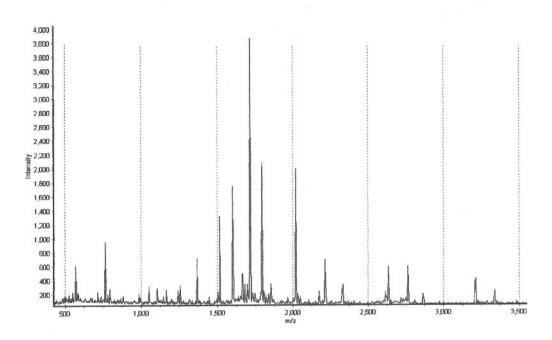
**Table 1**. Characteristics of the 25 cockroach allergic patients and the 5 normal controls


| Patient/Control No. | Age (years) | Sex | Specific IgE to German cockroach extract tested by | Skin prick test positive to allergen(s) of | Diagnosis         |
|---------------------|-------------|-----|----------------------------------------------------|--------------------------------------------|-------------------|
|                     |             |     | CAP System (IU)                                    |                                            |                   |
| P1                  | 24          | М   | ND                                                 | CR, House dust mite, Ant                   | AR                |
| P2                  | 22          | F   | ND                                                 | CR, Mosquito, Housefly, Pollen             | AR                |
| P3                  | 24          | Μ   | ND                                                 | CR, Grass, Cat, House dust mite            | AR                |
| P4                  | 15          | M   | ND                                                 | CR, Grass, House dust mite, Cladospore     | AR                |
| P5                  | 22          | M   | ND                                                 | CR, House dust mite                        | AR                |
| P6                  | 27          | M   | ND                                                 | CR                                         | AR                |
| P7                  | 23          | M   | ND                                                 | CR, Dog, Cat, House dust mite              | AR                |
| P8                  | 32          | M   | 2.86                                               | CR                                         | AR                |
| P9                  | 40          | Μ   | 2.17                                               | CR                                         | AR                |
| P10                 | 28          | F   | 3.95                                               | CR                                         | Atopic dermatitis |
| P11                 | 27          | F   | 0.42                                               | CR                                         | AR                |
| P12                 | 32          | М   | ND                                                 | CR                                         | AR                |
| P13                 | 26          | М   | ND                                                 | CR                                         | AR                |
| P14                 | 29          | F   | ND                                                 | CR                                         | AR                |
| P15                 | 30          | F   | ND                                                 | CR                                         | AR                |
| P16                 | 46          | М   | ND                                                 | CR                                         | AR                |
| P17                 | 30          | F   | ND                                                 | CR, House dust mite                        | AR, Asthma        |
| P18                 | 21          | F   | ND                                                 | CR, Grass, Dog, Cat, House dust mite       | AR                |
| P19                 | 21          | F   | ND                                                 | CR, Grass, Dog, Cat, House dust mite       | AR                |
| P20                 | 21          | F   | ND                                                 | CR , J,                                    | AR                |
| P21                 | 22          | F   | ND                                                 | CR, House dust mite                        | AR                |
| P22                 | 21          | F   | ND                                                 | CR                                         | AR                |
| P23                 | 22          | М   | ND                                                 | CR, House dust mite                        | AR                |
| P24                 | 22          | F   | ND                                                 | CR, House dust mite                        | AR                |
| P25                 | 22          | М   | ND                                                 | CR, House dust mite                        | AR                |
| C1                  | 20          | F   | ND                                                 |                                            | Normal            |
| C2                  | 21          | M   | ND                                                 | -                                          | Normal            |
| C3                  | 20          | F   | ND                                                 | -                                          | Normal            |
| C4                  | 20          | M   | ND                                                 | -                                          | Normal            |
| C5                  | 21          | F   | ND                                                 | -                                          | Normal            |

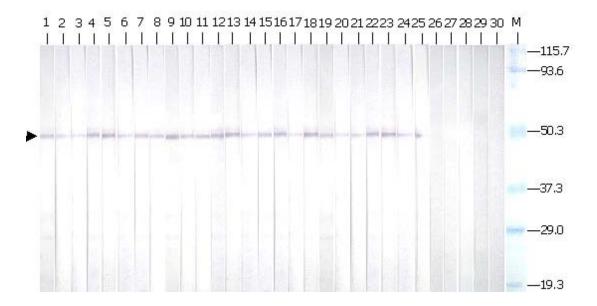
P, Patient; C, Control; M, Male; F, Female; IU, International Unit(s); ND, Not done; CR, Both American and German cockroach extracts; -, negative; AR, Allergic rhinitis


**Table 2**. Mimotope of MAb38G6 compared to peptide sequences in the protein database.

| Ortholog protein                                           |  |
|------------------------------------------------------------|--|
| I protein of <i>Anopheles gambiae</i>                      |  |
| Notch homolog scalloped wings of sheep blow flies (Lucilia |  |
|                                                            |  |
| Delta protein of the honey bee (Apis mellifera)            |  |
| Neu5Ac synthase of <i>Drosophila melanogaster</i>          |  |
| GA18754-PA protein of <i>Drosophila pseudoobscura</i>      |  |
| Tyrosine phosphatase of <i>Drosophila melanogaster</i>     |  |
| Delta protein of honey bee (Apis mellifera)                |  |
|                                                            |  |


22

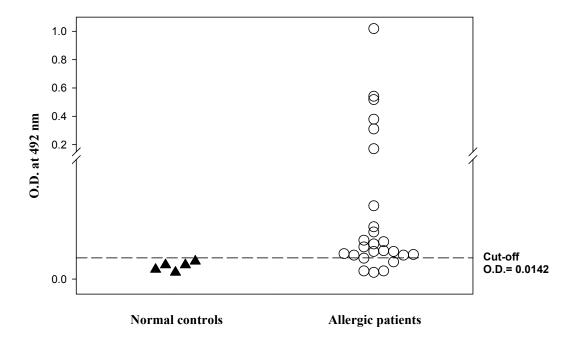



**Figure 1.** Two dimensional gel electrophoresis of crude extract of P. americana. (A) stained by CBB and (B) the blot probed with MAb38G6. Circles and the indicated numbers in A are protein spots which were subjected to LC/MS.



**Figure 2.** Mass spectra of protein spot no. 2 obtained from LC/MS analysis. The mass spectrometer operated in full scan mode; the total ion chromatogram (TIC) was collected over a range of m/z 400-1600.




**Figure 3**. MALDI-ToF MS profile of a tryptic digest of proteins in the gel plug of spot no. 2. The protein was digested by trypsin; the peptides analyzed by MALDI-ToF pro, and the prominent mass peaks were chosen for database searches.



**Figure 4.** Results of IgE-immunoblotting of sera of 25 CR allergic Thai patients and 5 controls against *P. americana* arginine kinase prepared from a MAb38G6-affinity column.

Lanes 1-25, arginine kinase blots probed with sera of 25 CR allergic patients; lanes 26-30, arginine kinase blots probed with sera of the 5 normal controls; Lane M, molecular mass marker; numbers at the right are molecular masses in kDa. Arrow head indicates reactive band of arginine kinase and specific IgE in patients' sera.

26



**Figure 5.** Scatter plots of sandwich ELISA results for detecting specific IgE to P. *americana* arginine kinase in sera of allergic patients (o) and normal controls ( $\blacktriangle$ ). Cut-off OD was mean + 2 standard deviations = 0.0142